
Robot Modeling with Autoregressive Transformers
Javier Fañanás-Anaya, Gonzalo López-Nicolás, Carlos Sagüés

Instituto de Investigación en Ingenierı́a de Aragón (I3A),
Universidad de Zaragoza, Spain

javierfa@unizar.es, gonlopez@unizar.es, csagues@unizar.es

Abstract—Many applications require accurate models of the
dynamic behaviour of robots, such as realistic simulation, state
prediction, and control. Traditionally, the modeling of these
systems is based on analytical solutions that are complicated
to develop. This is why in the state of the art some solutions
are based on neural networks. We present a novel transformer-
based architecture, called AR-Transformer, designed to estimate
the model of complex nonlinear robotic systems. Our goal is
to predict the behavior of the robot knowing only its initial
state at any time step for any prediction horizon, knowing the
external inputs or the control inputs. The AR-Transformer has
an autoregressive approach, which allows the architecture to
iterate and estimate states up to the time step for which the
control inputs are known. This autoregressive approach works
correctly with large prediction horizons thanks to training the
model without teacher forcing. We have positively validated the
architecture with a public dataset of real experiments of a 3 DOF
robotic arm.

I. INTRODUCTION

Modeling the dynamic behavior of robots presents a signifi-
cant challenge due to the complex and unpredictable nature of
their environments. Precise and accurate models are essential
for various applications, such as realistic simulation, state
prediction and control [1]–[3]. Traditional methods are based
on physical models, which can be difficult to obtain in dynamic
or complex environments. Deep learning techniques have
emerged as a powerful alternative to address these challenges
by enabling robots to be modeled directly from experimental
data, adapting to complex systems autonomously.

Physical models are widely used, however they are often
based on simplifications that do not capture all the dynamics
of the system. These simplifications may produce very small
errors in predictions of a few time steps, however, they can
greatly affect model performance in predictions of many time
steps [4]. Therefore, there has been growing interest in using
neural networks (NN) to model robotic systems because of
their ability to learn complex dynamics from data obtained
directly from experimental observations.

The problem addressed in this paper is to obtain an NN-
based model of a dynamic system to predict its behavior up
to any prediction horizon from known control inputs. For
example, to model the dynamics of the motion of a robot from
the power supplied to its motors. In modeling robotic systems
with NN, two main trends are observed in the state of the
art: NN architectures and hybrid physics models with NN.
The work of [5] integrates an architecture based on Recurrent
Neural Networks (RNN) and FeedForward NNs as a predictor
in a control scheme of a robotic arm whose function is to

cut fruits and vegetables. Another example proposes a RNN
applied to real-time motion control for mobile robots [6]. In
the case of hybrid models, one approach uses this method to
predict the state of a quadrotor [4]. Its proposed architecture
consists of a motion model and RNN. Another example uses an
hybrid model to estimate the aerodynamic forces and torques
of a quadrotor [7]. Specifically, the architecture consists of
a motor model and a rotor model, which combined with
the estimations of a temporal-convolutional NN, predict the
aerodynamic forces and torques.

One solution in the state of the art of NN is to work with
transformers. The original transformer architecture, as well as
the attention mechanisms, were designed mainly for natural
language processing problems [8]. In addition, the use of
transformers has been successfully extended to problems such
as computer vision [9] or time series forecasting [10]–[12].
In robotics, transformers have been applied to a variety of
problems, including vision-guided locomotion of a quadruped
robot [13], path planning [14] and imitation learning [15].
The work of [16] presents a transformer-based model capable
of interpreting instructions from text and performing the
corresponding actions. Although transformer-based methods
have been applied in various fields of robotics, the state of
the art in terms of modeling, simulating or predicting robot
dynamics is still based on RNN or hybrid physics models with
NN.

The context of our paper is the modeling of dynamic
robotic systems from external control inputs. The proposed
transformer-based architecture models the system by receiving
control inputs in real-time or using as input a time sequence
of control inputs of any length. Our main contributions are:

• A novel architecture, called AR-Transformer, based on
autoregressive transformers for modeling dynamic robotic
systems with any prediction horizon.

• The proposed architecture not only correctly models
the dynamics of robotic systems with the conditions
and control policies observed during training, but also
demonstrates high generalization and transferability.

• We evaluate the performance of the proposed architecture
with a public robotic dataset of real experiments.

The code of the proposed architecture, pre-trained models
and a tutorial for adding new datasets are publicly available
at https://github.com/javierfa98/AR_Transformer

Copyright notice: 979-8-3503-7636-4/24/$31.00 ©2024 IEEE

Citation: J. Fañanás-Anaya, G. López-Nicolás and C. Sagüés, "Robot Modeling With Autoregressive Transformers,"
2024 7th Iberian Robotics Conference (ROBOT), Madrid, Spain, 2024, pp. 1-6

Fig. 1. Schematic of a 3 DOF robotic arm system. At a time step t, the
control inputs ut = [τ1, τ2, τ3] represent the desired torques (Nm) applied to
the motors. The system state yt = [θ1, θ2, θ3, θ̇1, θ̇2, θ̇3] includes the joint
angles (rad) and angular velocities (rad/s).

II. PROBLEM FORMULATION

This section defines the problem of modeling dynamical
systems. Consider the state of a system at time step t as yt ∈
Rm and the control inputs at t as ut ∈ Rn. Consider a function
f that estimates the state of the system at the next time instant
ŷt+1 from ut and ŷt:

ŷt+1 = f(ut, ŷt). (1)

Modeling dynamical systems aims to calculate over a time
period T its state evolution Y1,T ∈ Rm×T

Y1,T =
[
y1 y2 · · · yT

]
. (2)

Knowing the initial state y0, and the control inputs over the
entire time period U0,T−1 ∈ Rn×T

U0,T−1 =
[
u0 u1 · · · uT−1

]
, (3)

function f can be iterated T times until getting an estimate
Ŷ1,T ∈ Rm×T

Ŷ1,T =
[
ŷ1 ŷ2 · · · ŷT

]
. (4)

Note that y0 can be any initial state, not necessarily at rest,
that needs to be known. The value of T is not fixed, and will
depend on how many time instants will be simulated or how
many future control inputs are known. The main problem to be
solved in this paper is to obtain a function f using transformers
that minimizes the error between Y1,T and Ŷ1,T .

Fig. 1 shows a schematic of the 3 DOF robotic arm system
used during the experiments of this paper.

III. TRANSFORMERS IN OUR FRAMEWORK

This section defines concepts of transformer architectures
and motivates how to apply these architectures to the presented
problem. Transformers are applied to problems where both the
input and output are sequences, and due to the nature of these
problems, the encoder-decoder architecture is typically used in
this context. For our problem we have considered keeping this
approach, since the attention mechanisms benefit from this.

To exploit the full potential of this approach, we propose
to use as input to the transformer both the current time step t

and the last h estimated states and control inputs, stored in a
matrix Xt,t−h ∈ R(n+m)×(h+1):

Xt,t−h =

[
ut ut−1 · · · ut−h

ŷt ŷt−1 · · · ŷt−h

]
(5)

where each column represents a time instant. With this input
we can modify (1) as follows:

ŷt+1 = f(Xt,t−h). (6)

The motivation for including the last h states is to apply
attention on them. Attention mechanisms are a fundamental
part of transformers. The main goal of attention in NN is to
enable it to focus selectively on certain parts of a sequence,
assigning different levels of importance to each element.

Attention calculation has three components: queries Q, keys
K, and values V . Obtaining these matrices involves linearly
transforming the input matrix X:

Q = WqX, K = WkX, V = WvX (7)

where Wq , Wk, and Wv are weight matrices. Once Q, K, and
V are obtained, attention is calculated by taking a weighted
sum of the values, with the weights being derived from the
similarity between the queries and the keys:

Attention(Q,K, V) = V softmax
(
QTK√

dk

)
(8)

where dk is the dimension of the key vector. Note that we
calculate Q, K, and V from the same input sequence X .
This attention approach is referred as self-attention, allowing
the architecture to weigh the importance of different elements
within the same sequence.

Cross-attention is another approach, where Q is derived
from the input sequence, but K and V are calculated from
another sequence. Generally, in transformer architectures, self-
attention is used in the encoder to obtain context from the input
vectors. This context, along with the decoder input vector, is
then used with cross-attention to generate the output vector in
the decoder. Commonly transformer architectures use Multi-
Head Attention, which can be defined as an extension of
Attention that uses mh sets of queries, keys and values:

MultiHead(X) = WoConcat(head1, head2, . . . , headmh
)

where headi = Attention(WqiX,WkiX,WviX)
(9)

where Wqi, Wki and Wvi are weight matrices of the i-th
head. The output of the Multi-Head attention is calculated
concatenating the results of each head and linearly projecting
them with Wo. Multi-Head Attention aims to focus on different
sequence parts with respect to distinct aspects, enhancing its
ability to capture diverse data relationships.

The final architecture will depend on the nature of the
problem to be solved. The following section details all the
layers and operations performed by our proposed architecture.

Feature
Projection

Multi-Head
Attention

Concat
Feed

Forward

Multi-Head
Attention

Concat
Feed

Forward

Encoder Layers

Encoder Input

Decoder Input

Decoder Layers

Linear
Feature

Projection

Fig. 2. Diagram of the AR-Transformer architecture. The encoder calculates the context from the last h control inputs and estimated system states Xt−1,t−h.
The decoder estimates the next state ŷt+1 of the system from the output of the encoder, and the current control inputs ut and state ŷt. The model can be
used in autoregressive way to predict any prediction horizon knowing the control inputs.

IV. PROPOSED ARCHITECTURE: AR-TRANSFORMER

This section will present the proposed architecture, AR-
Transformer. Fig. 2 shows a diagram of the architecture.
As motivated in the previous section, the encoder-decoder
approach is used. In our case, the encoder input matrix is
Xt−1,t−h ∈ R(n+m)×h:

Xt−1,t−h =

[
ut−1 ut−2 · · · ut−h

ŷt−1 ŷt−2 · · · ŷt−h

]
(10)

where the last h control inputs and estimated states of the
system are stored. The decoder input matrix is Xt ∈ R(n+m):

Xt =

[
ut

ŷt

]
(11)

where the current control input ut and the last estimated state
ŷt are used as input.

The encoder architecture will now be detailed. The dimen-
sion of the model dm is a hyperparameter with a large impact
on the size and performance of the architecture. We define
dm as the number of features at a time step. Considering the
encoder input matrix, we find that dm = m + n. Remember
that ut ∈ Rn and yt ∈ Rm. However, n+m may not be very
large, limiting the abstraction and learning capability of the
architecture, since dm has a direct impact on the number of
learning parameters. As an alternative with dm > n +m we
propose to include a layer before the encoder input, called
Feature Projection that projects the input matrix Xt−1,t−h

from R(n+m)×h to Rdm×h. This projection increases the
number of parameters at each time step, but decreases the
interpretability of the input matrix. The Feature Projection
layer consists on a FeedForward NN layer with dm neurons
and ReLU as activation function.

The proposed architecture continues with Le encoder layers,
each consisting of a Multi-Head Attention layer, a concatena-
tion layer, and a FeedForward layer. In the first layer, the input

is the output of the Feature Projection layer. In the subsequent
layers, the input is the output of the previous FeedForward
layer.

In the encoder, the Multi-Head Attention layer performs
self-attention on the input matrix. The output of the Attention
layer is concatenated with its input matrix, obtaining a matrix
of size R(2·dm)×h. In transformer models, a residual connec-
tion is typically used instead of concatenation to add the output
of a Multi-Head Attention to its input. This avoids doubling the
size of dm, which is usually large. However, in our scenario,
we have found that concatenating the output with the input,
and retaining the original information, leads to better results.
This approach is particularly beneficial because the next state
of a robotic system highly depends on previous states, and
preserving this information improves the estimations.

In the encoder, the dimensions of Q ∈ Rdq×h, K ∈ Rdk×h,
and V ∈ Rdv×h have been defined as follows for consistency:

dq = dk = dv = dm/mh (12)

where mh is the number of heads. The encoder ends with a
FeedForward layer. This layer has dm neurons with a ReLU
activation function. The decoder has a similar composition.
The input matrix Xt is projected with a Feature Projection
layer if dm > n+m. The matrix is then used as input for the
decoder.

The decoder is formed with Ld decoder layers, where
each layer is again formed by a Multi-Head Attention layer,
a concatenation layer and a FeedForward layer. The main
difference is that in the Multi-Head Attention layer there
is cross-attention, where Q ∈ Rdq×1, K ∈ Rdk×h, and
V ∈ Rdv×h, since the decoder attends to the sequence
provided by the encoder. Therefore, with the output of the
decoder it is predicted the next state of the system based on
the context of the previous h states.

As described, with one iteration of the AR-Transformer only
the state of the system at the next time instant is estimated.

TABLE I
HYPERPARAMETERS OF THE AR-TRANSFORMER ARCHITECTURE ALONG

WITH THE BEST VALUES FOUND DURING EXPERIMENTATION

Symbol Value Description
h 30 Previous time steps used by the encoder
Le 3 Number of encoder layers
Ld 1 Number of decoder layers
mh 8 Number of heads in the Attention layer
dm 128 Number of features at each time step
e 200 Number of epochs
B 7 Batch size
η 0.0001 Learning rate
J MSE Cost function

Thus, note that it is possible to use this architecture in an
autoregressive way, and estimate the evolution of the state of
a dynamical system for any prediction horizon T as long as
the control inputs are known.

V. TRAINING ALGORITHM AND HYPERPARAMETERS

Each iteration of the AR-Transformer not only depends
on the h previous control inputs, but also uses the h last
estimated states of the system. This leads to an autoregressive
approach, where the model estimations are used to make the
next predictions. To train an autoregressive NN there are two
options, training with teacher forcing (TF) or training without
teacher forcing (no-TF) [17].

The TF training consists in using during the training phase
the actual states of the system yt, instead of the estimations ŷt
made by the architecture. This approach has some advantages,
such as shorter convergence times, simpler training algorithm
and better parallelization of the training. However, the main
drawback is that the NNs trained with this approach present
more error with long prediction lengths [18].

In the no-TF approach the architecture is trained using
as input in each iteration the previous h estimations of the
state. It is trained in an autoregressive way, similar to when
the architecture is executed in the inference phase. In our
scenario, Xt,t−h (5) is used as input in each iteration. In our
experimentation we have observed that the no-TF approach,
although it is a slower training process, allows us to obtain a
much more robust architecture at long prediction times when
we have an autoregressive architecture.

The AR-Transformer architecture has a number of hyper-
parameters that need to be adjusted during the training phase.
Table I defines the hyperparameters that have the greatest
impact on the performance and size of the architecture together
with the best values found after a gridsearch in the example
used during experimentation.

VI. RESULTS

In this section we will validate the proposed architecture
with experiments. We have selected the dataset proposed in
[19]. In that paper, a dataset based on real experiments of a 3
DOF robotic arm system is presented, similar to the one shown
in Fig. 1. The robot arm has three joints, each providing one
degree of freedom. It is controlled by sending desired torque
commands to the motors at each joint. The setup includes a

variety of controllers to assess the transferability of learned
dynamics models. In particular, we have used the dataset that
employs feedback policies, which generates the control inputs
with a PD controller. The dataset consists of 50 series of
experiments, where each series consists of 14 seconds. The
control and observation rate is 1000 Hz, meaning that from
each series we have 14000 time steps. At each time step t, we
have as control input ut the three desired torques (Nm) sent
to the motors, where n = 3. The state yt is six-dimensional,
where m = 6, containing measured angles (rad) and measured
velocities (rad/s). The 50 series of experiments are divided into
38 for training, 3 for validation and 9 for testing.

In addition to the 9 test sets, which we will call D0,
the dataset has tests to measure the transferability of the
trained architecture, with 3 datasets designed to evaluate the
performance of the architecture in conditions different from
those seen during training:

• D1: Trajectories recorded with a closed-loop controller
tracking sine waves of high angular frequency, con-
strained to a restricted area within the robot’s entire range
of movement.

• D2 Trajectories with low-frequency sine waves but uti-
lizes the full range of safe joint movements.

• D3: High-frequency sine waves across the full range of
joint movements, presenting a challenging scenario where
both the input frequency and the spatial constraints are
different from the training conditions.

Note that in the training series and at D0, trajectories are
recorded with low frequency sine waves restricted to an area
within the entire range of motion of the robot.

The metrics used during training and testing are listed be-
low. The objective of the metrics is to evaluate the estimations
of the architecture during N time steps Ŷ1,N with respect to
the real values Y1,N . The chosen metrics are Mean Square
Error (MSE) and Mean Absolute Error (MAE).

MSE(Y1,N , Ŷ1,N) =
1

N

N∑
i=1

(yi − ŷi)
2 (13)

MAE(Y1,N , Ŷ1,N) =
1

N

N∑
i=1

|yi − ŷi| (14)

MSE is a metric widely used as a cost function in NN
training. MAE is a metric that respects the original units of the
data, and is less sensitive to outliers, being easier to interpret.

To optimize the hyperparameters of the AR-Transformer, a
gridsearch was performed. The best results on the training and
validation data were obtained with the hyperparameters shown
in Table I. The Adam algorithm has been used as optimizer
[20]. The prediction horizon during training, validation and
testing has been set at 1000 time steps.

In addition to calculating the average error as a validation
metric, we calculate the average ranking in the same way
proposed in [19]. This metric is the average of the error of the
angles and velocities, losing the physical interpretability but
obtaining a single metric to evaluate and compare architectures

0 200 400 600 800 1000
0

1

2

3
An

gl
e
(ra

d)
θ1
̂θ1

0 200 400 600 800 1000
0

1

2

3

An
gl
e
(ra

d)

θ2
̂θ2

0 200 400 600 800 1000
Steps

0

1

2

3

An
gl
e
(ra

d)

θ3
̂θ3

0 200 400 600 800 1000
−20

−10

0

10

20

An
gu

la
r V

el
̂ (
ra
d/
s)

̇θ1
̂̇θ1

0 200 400 600 800 1000
−20

−10

0

10

20

An
gu

la
r V

el
̂ (
ra
d/
s)

̇θ2
̂̇θ2

0 200 400 600 800 1000
Steps

−20

−10

0

10

20

An
gu

la
r V

el
̂ (
ra
d/
s)

̇θ3
̂̇θ3

Fig. 3. Actual angles θ and angular velocities θ̇ with their estimations θ̂, ˆ̇
θ with negligible error using the AR-Transformer in the first 1000 time steps of

D0, estimated from 30 known time steps. The sampling frequency was 1000 Hz, so each time step corresponds to 0.001s. The plots on the left correspond
to the 3 joint angles and those on the right correspond to their 3 angular velocities.

TABLE II
AR-TRANSFORMER MAE AND AVERAGE RANKING IN THE TESTS

Architecture Test Angle MAE Velocity MAE Average
(rad) (rad/s) Ranking

AR-Transformer D0 0.11 0.86 0.48
AR-Transformer D1 0.16 1.98 1.07
AR-Transformer D2 0.35 2.43 1.39
AR-Transformer D3 0.32 3.35 1.83
NN-hist1 [19] D0 - - ≈ 2
NN-hist1 [19] D3 - - ≈ 2.5

in a simple way, where lower is better. Table II shows the
MAE of the angles and velocities, and the average ranking,
for the 4 datasets of test data. Using AR-Transfromer, in
the case of D0 the error is very small, and as expected,
in the transferability tests (D1, D2, D3) this error increases
slightly. In [19] is evaluated as a benchmark 14 methods,
obtaining the best results with a NN with an average ranking
of approximately 2 for D0 and 2.5 for D3. In our case, AR-
Transformer outperforms these metrics obtaining 0.48 and 1.83
average ranking for D0 and D3 respectively.

Fig. 3 shows the angle and velocity estimations of the AR-
Transformer with negligible error in the first 1000 time steps
of D0. Fig. 4 shows the angular velocity estimation at the third
joint in order to observe how the AR-Transformer performs in
the transferability tests. The reason for showing this joint is
that, in the transferability tests, it is where the behavior varies
the most, going from a range of values from -12 to 12 rad/s in
the training data to a range of -30 to 30 rad/s in D3. As can be
seen, in D1 and D2 the estimation error is still small. In D3,
although more noise is present, the estimation is good. The
results in the transferability tests are very good considering
that the conditions and ranges of values are different from

0 200 400 600 800 1000

−20

0

20
An

gu
la
r V

el
. (
ra
d/
s)

̇θ̇
̂̇θ̇

0 200 400 600 800 1000

−20

0

20

An
gu

la
r V

el
. (
ra
d/
s) ̇θ̇

̂̇θ̇

0 200 400 600 800 1000
Steps

−20

0

20

An
gu

la
r V

el
. (
ra
d/
s)

̇θ̇
̂̇θ̇

Fig. 4. True angular velocity θ̇3 and AR-Transformer estimation ˆ̇
θ3 at the

third joint. First and second plots correspond to 1000 time steps of D1 and
D2 respectively, showing a small error. These results are good considering
that the conditions and ranges shown in these tests are different from those
observed during training. The third plot corresponds to D3 where, although
the results are good, more noise is observed.

those observed during training.
In addition to the results shown, we have measured the

time of the AR-Transformer in estimating 1000 time steps
on an NVIDIA GeForce RTX 2060 GPU. We obtained 18.36
s, which is 18.36 ms per time step, or 54.46 Hz. These results
are positive and show a low computational cost.

The architecture shows good results and generalization
capability in the transferability tests, however, the robustness

of the model to perturbations is not measured in these tests.
For example, cases where the robot is pushed or the robotic
arm picks up an object are not tested. In these situations,
the model estimation would eventually diverge. A possible
solution would be to consider these situations by adding more
input parameters to the model. For example, in the case of
picking up an object, the input parameters indicating when
an object is picked up and its characteristics could be useful.
Another simpler solution would be to periodically measure
the actual state of the robot, to correct the perturbations, and
continue the estimation from that instant.

VII. CONCLUSION

We propose AR-Transformer, a new architecture based on
autoregressive transformers. In the state of the art of modeling
robotic systems with NN we found solutions based on RNN.
However, we detected a lack of proposals with Transformers,
despite being the state of the art in NN-based solutions
for many problems. The AR-Transformer allows modeling
robotic systems and predict their state evolution from any
number of time steps of control inputs. Our proposal uses an
autoregressive state estimation approach, that works for large
prediction horizons by using the no-TF training algorithm.

Our AR-Transformer architecture has several novelties com-
pared to a basic transformer. We keep the encoder-decoder
structure, where the encoder calculates the context from
the last h control inputs and previous estimated states. The
decoder estimates the next state from the context, current
control inputs, and the previous estimated state. We propose
processing the input data matrices in a FeedForward layer,
called Feature Projection, in order to increase the feature
dimension and obtain more complex and rich features. The
main novelty in the encoder and decoder layers is that, instead
of using a residual connection, we use a concatenation to
maintain the original information since the next state of a
robotic system is highly dependent on the previous one.

Our approach has been evaluated using a public dataset of
real experiments of a 3 DOF robotic arm, and with the AR-
Transformer we improved the results presented in the original
paper associated to the dataset. We have shown the potential
of the AR-Transformer in the modeling of robotic systems.
In view of the good performance of this architecture with the
dataset based on real experiments, we consider as future work
to test this architecture in real applications, including model-
ing, identification and control of robotic systems. Additionally,
a more extensive comparison with other datasets and NNs is
also of interest. It would also be interesting to analyze the
generalization of the proposed architecture to other different
robotic systems and dynamical systems.

ACKNOWLEDGMENT

This work was funded by the Government of Aragón,
group T45 23R, and by projects CPP2021-008938, PID2021-
124137OB-I00 and TED2021-130224B-I00, funded by
MCIN/AEI/10.13039/501100011033 and by the European
Union-NextGenerationEU/PRTR.

REFERENCES

[1] C. Armanini, F. Boyer, A. T. Mathew, C. Duriez, and F. Renda,
“Soft Robots Modeling: A Structured Overview,” IEEE Transactions
on Robotics, vol. 39, no. 3, pp. 1728–1748, 2023.

[2] C. Mavrogiannis, F. Baldini, A. Wang, D. Zhao, P. Trautman, A. Ste-
infeld, and J. Oh, “Core Challenges of Social Robot Navigation: A
Survey,” ACM Transactions on Human-Robot Interaction, vol. 12, no. 3,
pp. 36:1–36:39, 2023.

[3] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep control
policies for autonomous aerial vehicles with MPC-guided policy search,”
in IEEE International Conference on Robotics and Automation (ICRA),
2016, pp. 528–535.

[4] N. Mohajerin and S. L. Waslander, “Multistep Prediction of Dynamic
Systems With Recurrent Neural Networks,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 30, no. 11, pp. 3370–3383,
2019.

[5] I. Lenz, R. Knepper, and A. Saxena, “DeepMPC: Learning Deep
Latent Features for Model Predictive Control,” in Robotics: Science and
Systems XI, 2015.

[6] D. Chen, S. Li, and L. Liao, “A recurrent neural network applied to
optimal motion control of mobile robots with physical constraints,”
Applied Soft Computing, vol. 85, p. 105880, 2019.

[7] L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza,
“NeuroBEM: Hybrid Aerodynamic Quadrotor Model,” in Robotics:
Science and Systems XVII, 2021.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is All you Need,” in Advances in
Neural Information Processing Systems, vol. 30, 2017, pp. 6000–6010.

[9] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah,
“Transformers in Vision: A Survey,” ACM Computing Surveys, vol. 54,
pp. 200:1–200:41, 2022.

[10] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond Efficient Transformer for Long Sequence Time-
Series Forecasting,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 12, pp. 11 106–11 115, 2021.

[11] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition
Transformers with Auto-Correlation for Long-Term Series Forecasting,”
in Advances in Neural Information Processing Systems, vol. 34, 2021,
pp. 22 419–22 430.

[12] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “FEDformer:
Frequency Enhanced Decomposed Transformer for Long-term Series
Forecasting,” in Proceedings of the 39th International Conference on
Machine Learning, 2022, pp. 27 268–27 286.

[13] R. Yang, M. Zhang, N. Hansen, H. Xu, and X. Wang, “Learning
Vision-Guided Quadrupedal Locomotion End-to-End with Cross-Modal
Transformers,” 2022. [Online]. Available: 10.48550/arXiv.2107.03996

[14] D. S. Chaplot, D. Pathak, and J. Malik, “Differentiable Spatial Planning
using Transformers,” in Proceedings of the 38th International Confer-
ence on Machine Learning, 2021, pp. 1484–1495.

[15] H. Kim, Y. Ohmura, and Y. Kuniyoshi, “Transformer-based deep imi-
tation learning for dual-arm robot manipulation,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2021, pp.
8965–8972.

[16] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-Actor: A Multi-
Task Transformer for Robotic Manipulation,” in Proceedings of The 6th
Conference on Robot Learning, 2023, pp. 785–799.

[17] R. J. Williams and D. Zipser, “A Learning Algorithm for Continually
Running Fully Recurrent Neural Networks,” Neural Computation, vol. 1,
no. 2, pp. 270–280, 1989.

[18] M. Sangiorgio, F. Dercole, and G. Guariso, “Forecasting of noisy chaotic
systems with deep neural networks,” Chaos, Solitons & Fractals, vol.
153, p. 111570, 2021.

[19] D. Agudelo-Espana, A. Zadaianchuk, P. Wenk, A. Garg, J. Akpo,
F. Grimminger, J. Viereck, M. Naveau, L. Righetti, G. Martius,
A. Krause, B. Scholkopf, S. Bauer, and M. Wuthrich, “A Real-Robot
Dataset for Assessing Transferability of Learned Dynamics Models,”
in IEEE International Conference on Robotics and Automation (ICRA),
2020, pp. 8151–8157.

[20] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
2017. [Online]. Available: 10.48550/arXiv.1412.6980

